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Reciprocity in Electron Diffraction and Microscopy 
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The Reciprocity Theorem of scattering theory is shown to hold generally for electrons scattered elasti- 
cally in an absorbing medium, and also for inelastically scattered electrons, to a certain approximation. 
Two scattering symmetry conditions are defined by applying the theorem to crystals having mirror 
symmetry parallel to the crystal surface, and to centrosymmetric crystals. These are general forms of 
conditions demonstrated by Fukuhara (J. Phys. Soc. Japan (1966), 21, 2645). A number of symmetry 
effects observable in electron microscope images of crystals result from one or other of these conditions. 
The variation of intensity of diffracted beams as a function of angular deviation from the Bragg condi- 
tion is considered in detail. The symmetry of bright-field images of defects lying at equal distances from 
the crystal surfaces was first explained by Howie & Whelan (Proc. Roy. Soc. (1961), A 263, 217); 
such symmetry properties can be conveniently classified and explained by the reciprocity theorem. 
A method of obtaining high-resolution dark-field images, due to Cowley, is based on the use of the 
reciprocity theorem. Examples of its application for both Bragg and diffusely scattered electrons are 
given. 

1. Introduction 

The Reciprocity Theorem of scattering theory may be 
stated in terms of two points A,B, and a scatterer, P, 
as follows: 

The amplitude at B of  a wave originating from a 
source at A, and scattered by P, is equal to the scat- 
tered amplitude at A due to the same source placed at B. 

The theorem was originally used by von Laue (1935) 
to derive the amplitude outside a crystal due to a point 
source of X-rays or electrons within it, and hence to 
obtain the intensities of Kossel and Kikuchi patterns. 
Von Laue (1948) later generalized the theorem to allow 
for the production of diffuse scattering from a finite 
volume of crystal. Kainuma (1955) used this form of 
the Reciprocity Theorem (R-T) in his theory of Kikuchi 
patterns. In applying these theories, the two-beam ap- 
proximation to the dynamical theory was used. 

In the usual electron diffraction experiment, both 
source and point of observation are effectively at in- 
finity, and many diffracted beams are generated simul- 
taneously (n-beam situation). The crystal is assumed 
to be parallel-sided, with the electrons incident at a 
small angle to the surface normal. Usually inelastic 
processes also occur, resulting in electrons being scat- 
tered out of the Bragg-diffracted beams. The crystal 
then acts as an absorber of elastically scattered elec- 
trons. We find that none of these conditions restricts 
the practical application of the R-T to the determina- 
tion of relations between diffracted intensities. 

Before considering the proof of the theorem in 8 2 
and its implications in electron microscopy, we give 
an example of the occurrence of the reciprocity effect 
in an n-beam calculation. 

A crystal may often be tilted so that only the line 
of reflexions nh, nk, nl (n = 0, + 1, + 2 , . . . )  is present in 
the diffraction pattern. This is the case of 'systematic 

reflexions' (Hoerni, 1956). We take the case of a silicon 
crystal orientated so that the 111 systematics occur, 
and the Bragg condition for the 111 reflexion is satis- 
fied. The intensity of the conjugate reflexion, 111, is 
examined as a function of crystal thickness. These ini- 
tial conditions are shown in Fig. l(a). Exchange and 
reversal of the incident and 1-H beams results in the 
conditions given in Fig. l(b). The theorem says that the 
intensity of the 1-~ beam will be the same for both 
cases, for equal incident intensity. The reciprocal space 
representation of the two cases is shown in Fig. l(c). 
Intensities have been calculated for 100 kV electrons 
for each case, using the 'multi-slice' method developed 
by Goodman & Moodie (1965) from the n-beam theory 
of Cowley & Moodie (1957). The results are given in 
Figs. l(d) and l(e) for some important reflexions. The 
111 intensity is the same for both tilts, contrasting 
strikingly with the gross differences observed for all 
other reflexions. The same effect is seen in calculations 
which include absorption coefficients. Intensities ob- 
tained experimentally under equivalent conditions 
show excellent agreement with the computed values 
(8 6). 

It is not convenient to invert the crystal in a diffrac- 
tion camera or electron microscope. However, this is 
found to be unnecessary, since the R-T can be com- 
bined with either of two commonly occurring crystal 
symmetries, thus defining two types of scattering-sym- 
metry condition relating the incident and diffracted 
beams, and the crystal (8 3). These are more general 
forms of relations given by Fukuhara (1966). The use 
of these relations in interpreting symmetry effects ob- 
served in images of perfect and defective crystals is 
considered in 88 4 and 5. Finally, we give examples of 
the use of a recent method of obtaining high-resolution 
dark-field images (Cowley, 1966), which depends on 
the reciprocity effect. 
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2. The reciprocity theorem of scattering theory 

The usual proof of the Reciprocity Theorem in scat- 
tering theory, involving time-reversal symmetry, as- 
sumes an Hermitian Hamiltonian; i.e. for potential 
scattering, a real potential. Such assumption, however, 
is not necessary for a proof• It is worth noting that the 
treatment of yon Laue (1948) applies equally to a 
complex potential; see also Bilhorn, Foldy, Thaler, 
Tobocman & Madsen (1964). Here we present another 
proof, essentially similar to yon Laue's, but which may 
possibly be more readily visualized and generalized. 
The treatment is given in terms of scalar quantities, 
such as electron waves, but analogous theorems hold 
for vector or spin fields. 

Consider a point source of electrons at A. We write 
Schr~Sdinger's equation in an integral form, 

exp(iklr-rAI) ~" e x p ( i k l r - r ' l )  
st(r)= 

[ r - r A ~  + ~ I r - r ' l  

V(r')~u (r')d3r ' , 

and obtain a Born series by iterating in the usual way: 

exp( ik l r - ra l )  f exp( ik l r - r ' l )  
~,(r) . . . . .  I r - r . 4 l  + ~ i r - r ' l  

V(r') 

exp-(/-klr'----:rAI-) d3r'+ f l exp(iklr-r'l) V(r') 
Ir ' -rAI I r - r ' l  

exp( ik l r ' - r " l )  exp( ik l r " -  r.41) 
- I r ' - r " i  V(r") I r " - r A  

d3r'd3r ' '  + . . . .  

Now interchanging r and rA does not change the value 
of any of the terms. Pictorially, one can imagine a scat- 
tering process of any order proceeding from A via 
points r', r " , . . . ,  to r, and the reciprocal process from 
r v ia  . . . ,  r" ,  r', to A, 'matching' the first exactly in 
potential and propagation terms. V need not be real; 
the essential element is the symmetry of the Green's 
function. One notes incidentally that reciprocity holds 
for each term of the Born series separately. 

For inelastic scattering, the time-reversal approach 
requires the scatterer to be in its excited state for the 
reciprocal process. This is not suitable for the present 
applications; we wish to consider the scatterer starting 
always in its ground state (or thermal equilibrium, as 
appropriate). In this case, one can derive a reciprocity 
theorem under suitable restrictions. 

We use the theory and notation of Yoshioka (1957), 
in which scattering (not necessarily by a crystal) is 
described by a set of coupled equations. Neglecting 
constants, these are: 

V2~n -}" k2n~On = .S Hn'm~Om , n = O, 1 ,2  . . . .  
m 

n = 0  represents the elastically scattered wave. Each 
equation can be expanded in a Born series, but only 

the n = 0 equation has a leading term, representing the 
incident wave. For a given ~0n, each iteration after the 
first includes contributions from all ~0. 

Writing 
e x p ( i k n l r -  r'l) 

Gn(r ' r ' )=  I r - r ' l  

one has 
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Fig. 1. Reciprocity effect in intensities for silicon ill-syste- 
matic reflexions, computed as functions of thickness, t. 
(21-beam calculation). (a) Bragg condition for 111 satisfied 
giving intensities shown in (d); application of R-T for T'i'T 
reflexion exchanges and reverses incident and iT[ beams, 
as in (b); the ~ Bragg condition is now satisfied. (e) All 
intensities except the ]-]-T are different. Ewald sphere con- 
struction (c) emphasizes changes in excitation errors for all 
reflexions. 
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q~n(r)= S Gn(r'r')H~°(r')G°(r"rA)dr'+ I I  Gn(r,r') 

H~m(r')Gm(r',r")H~o(r")Go(r",r.4)dr'dr" + . . . , 
m 

with obvious physical interpretation. Now if one makes 
the (usual) assumption kn~_ko for all processes con- 
tributing significantly to the scattered intensity, the 
functions Gm can be taken out of the summations. By 
definition, O 

H,~(r)= I * an(q) V(q,r)am(q)dq 

where V(q,r), (H '  in Yoshioka's paper), is the inter- 
action energy between the incident electron (coordinate 
r) and the scatterer (coordinates q). Furthermore the 
states an(q) of the scatterer form a complete ortho- 
normal set, for which the closure property holds; 

i.e. S am(q')am(q) = fi(q' - q) . 
m 

Hence 

Z~,m Hnm(r)Hmp(r')= ~m l a*n(q)V(q,r)am(q)dq Iam(q') 

× V(q',r')a~(q')dq'= f a*~(q)V(q'r)V(q'r')ar(tOdq" 

So one obtains, for the integrand of a term in the Born 
series, a product of the G's and an integral 

f a~(q)V(q,r ' )V(q,r") . . .  V(q,r'")ao(q)dq, 

which depends only on the initial and final states of 
the scatterer and on the positions r', r " , . . ,  of the scat- 
tering, but not on their order. So all the symmetry 
required for a proof of the R-T by the previous method 
is present here, subject only to the above approxima- 
tion. 

To include all inelastic (and thermal) processes which 
scatter in a given direction, one simply notes that they 
are incoherent if they leave the scatterer in a different 
state. Then there results a reciprocity of intensities. 

Z 

• f'" S ~T \ " ' ,  

o, I 

h 

Fig.2. Definition of T, k,, s, and sh. 

The validity of the process of taking both r~ and r 
to infinity has been considered by Bilhorn et al. (1964). 

3. The reciprocity theorem and crystal symmetry 

The R-T enables one to find two incident beam direc- 
tions for which the amplitudes of a given diffracted 
beam are equal. However, the electrons are incident 
on opposite faces of the crystal. Two types of scat- 
tering-symmetry condition are defined, relating ampli- 
tudes of diffracted beams via the R-T and a crystal 
symmetry operation. Type I involves reflexion in a 
crystal plane, and type II involves a central inversion. 

The crystal, of thickness t, is represented by the 
symbol C; the mirror image of this in the plane z=  t/2, 
mid-way between the surfaces, is the crystal C(m). Like- 
wise, the crystal C -  is the result of inversion of crystal 
C + in its centre. 

A notation similar to Fukuhara's (1966) is used: 
~u~(kz, s, C) represents the amplitude of the reflexion 
from the crystal C, kz and s being the components of 
the incident wave-vector along, and perpendicular to 
the surface normal, z, respectively. Then the R-T is 
expressed by 

, ~ ( k z ,  s , C ) = ~ h ( - k z , - ( s + h ) , C ) ,  (3.1)* 

since sh, the component of the diffracted wave-vector 
perpendicular to z, is given by 

s~ = s + h (see Fig. 2). 

By putting s = - h/2 + r in (3.1), and reflecting the 
r.h.s, in the plane z=  t/2, we obtain the relation be- 
tween diffracted waves in C and C(m): 

Type I: 

~h(kz, - h / 2  +r, C)=~h(kz ,  - h / 2 - r ,  C(m)) . (3.2) 

Similarly, by inversion of the r.h.s, of (3.1) in the centre 
of crystal C +, we obtain 

Type II: 

)g~(kz, -- h/2 + r, C +) = ~u~(kz, - h/2 - r, C - ) .  (3.3) 

Hence type I relation holds for a crystal mirror-sym- 
metric about the plane z =  t/2 (C(m) = C), and type II 
holds for a centrosymmetric crystal ( C = C + = C - ) .  
Strictly speaking, the symmetry should be satisfied by 
(i) the crystal symmetry, (ii) the crystal boundaries, and 
(iii) the crystal defects, if present. However, frequently 
one or other of these may be relaxed; for example, 
use of the 'column approximation' allows one to neglect 
the exact form of the surfaces. Again, if one considers 
only the zero layer of the reciprocal lattice (l= 0), mir- 
ror symmetry about z =  t/2 always holds close to the 

* It should be noted that in this and similar equations, the 
notation kz or -k~ is used only to indicate whether the elec- 
tron beam is incident from above or below the crystal. No 
relation between the magnitudes of the k;s appearing on 
either side of the equations is implied, since this is determined 
by s or s + h respectively. The authors are grateful to Mr A. F. 
Moodie for pointing this out. 



106 R E C I P R O C I T Y  IN E L E C T R O N  D I F F R A C T I O N  AND M I C R O S C O P Y  

principal orientation, and for a single row of hkO 
systematic reflexions it holds for any orientation. 

Fukuhara (1966) has derived symmetry relationships 
between intensities of diffracted beams, from the prop- 
erties of the scattering matrix for a centrosymmetric 
crystal. Our equations (3.3), (3.2) are the amplitude 
forms of his equations (18), (20) respectively. 

It is often useful to be able to state the above equa- 
tions in diagrammatic form. The diffracting conditions 
are specified by the projection T of the tie-point on 
the hkO reciprocal lattice plane, (Fukuhara, 1966). The 
arrow notation is used to show the direction of kz. 
In Fig. 3 the R-T and type II conditions are shown. 

A real-space diagram is useful when only systematic 
reflexions are considered. Type I symmetry is illus- 
trated in Fig.4, where the directions of the (unit- 
amplitude) incident wave and of gth are specified by 
angles a, fl to the surface normal, ram' is the mirror 
plane, and 0 the Bragg angle. 

Finally, it should be noted that equations (3.1)-(3.3) 
imply no restrictions on the number of beams inter- 
acting, other than the limitations imposed if only sys- 
tematic or hkO interactions are considered. 

4. S y m m e t r y  in i m a g e s  of  perfect  crystals  

By 'perfect' crystals, we mean those containing no de- 
fects resolvable in electron microscope images. When 
considering images of bent or wedge shaped crystals, 
we assume the column approximation to hold*. 

4.1 Dark-field rocking curves 
Rocking curves - the variation of intensity with angle 

of incidence - can be obtained experimentally by dark- 
field imaging of bent crystals of uniform thickness, and 
by the convergent beam technique (Goodman & 
Lehmpfuhl, 1965). We assume the presence of a mirror 
plane, or neglect hkl interactions for l #0 .  Type I sym- 
metry conditions then apply. The intensity of the h 
rocking curve may be plotted as a function of the 
components s, ~, s.h of s in the directions parallel and 
perpendicular to Ii. We define the principal Bragg orien- 
tation P(h) for the reflexion h to be that for which 
s = - h i 2 .  By application of equation (3.2) we see that 
the intensity in the rocking curve of points related by 
inversion through P are equal [e.g. (J,J') or (LI') in 
Fig. 5(a)]. 

When the crystal is tilted about the h direction until 
only the systematic reflexions nh, (n = 0, 4-1 , . . . ) ,  have 
significant amplitude, scattering occurs only in the 
plane defined by the incident wave-vector K0 and h. 
Under these conditions, the rocking curve becomes a 
function of s,n only, and is symmetrical about the 
Bragg position (s ~ n = h/2). This can be seen by studying 
Fig.4; we have c¢+fl=20, and hence if~=O+AO, then 
p=o-~o. 

* The column approximation was introduced by Hirsch, 
Howie & Whelan (1960). 

Intensities at points/ ,  J in Fig. 5(a) will not be equal 
in general because of the presence of non-systematic 
interactions. In practical cases, other symmetry ele- 
ments of the crystal (e.g. a mirror plane) will often 
cause equality of intensities at J and I ' ,  and hence at 
J and L Fukuhara's (1966) statement that the h bend 
contour is 'symmetric with respect to a line passing 
along the hth Bragg position' is correct only if such 
additional conditions are present, or if non-systematic 
reflexions are absent. 

The convergent beam technique provides a most sen- 
sitive means of observing symmetries in angular dis- 
tribution of scattering from the crystal (see Goodman 
& Lehmpfuhl, 1965). A convergent beam pattern of 
hexagonal cadmium sulphide close to 1T0 orientation 
was taken* so that the 004, 220 and 224 reflexions were 
all satisfied simultaneously for a direction close to the 
axis of the cone of illumination. Then the point P(224) 
lies in the 224 disc, and the symmetry of intensity 
about this point is evident [see Fig.5(b)]. The (110) 
plane in cadmium sulphide is a plane of mirror sym- 
metry. Thus points/,  J [Fig. 5(a)] will have equal inten- 
sity for the 001 reflexions, as is seen in the 004 disc 
of Fig. 5(b). 

* This convergent beam pattern was taken by Mr P. Good- 
man on the convergent beam diffraction camera of Cockayne, 
Goodman, Mills & Moodie (1967) at C.S.I.R.O. Division of 
Chemical Physics, Clayton, Victoria. 
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,p  • " w m ~ - - -O  

I r ' ®  
I I 
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I I 
BZB (77) BZB (h) 

Fig. 3. Reciprocal space diagram representing terms of equa- 
tions (3.1) and (3.2) in the hkO reciprocal lattice plane. 

Scattering 
Point Incident vector expression 
T Q + kz, s ~'h(k~, s, C +) 
T" O -- kz, - (s + h) q/h(- kz, - (s + h), C + 
T"® +kz,  ( s+h)  ~t~(k~, (s+h) ,  C- 
If T lies on the h-Brillouin zone boundary [BZB(h)], then 
the Bragg condition for h is satisfied. 
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Fig. 5. Symmetry of rocking curves for the reflexion h about the principal Bragg orientation, P(h). (a) Definition of P(h) and 
equivalent points (I, I ')  and (J ,J ' )  in plot of intensity of reflexion h as a function of incident beam direction s. (b) Convergent 
beam pattern from cadmium sulphide, showing symmetry of intensity of 224 beam about P(224), and symmetry of 004 intensity 
across the line sTw~004] =½[004]. P(224) is the centre of the circle drawn about the 224 disc. 

(a) (b) 

Fig. 6. Thickness extinction contours in silicon wedge, tilted to satisfy the 111 systematics. (a) TiT translated aperture dark field 
image, for 111 Bragg condition satisfied; (b) corresponding H R D F  image; i.e. 111 image for the 333 Bragg condition satisfied. 
Compare with Fig. 1. 
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(b) (d) 

Fig.7. Images of  silicon wedge close to [3~'~] orientation. (a) Translated-aperture '2"20 dark field image, for diffraction conditions 
shown in (b). (c) H R D F  220 image, after beam had been tilted through -202--~-- 6 to place 220 on the optic axis (marked +) ,  
leading to diffraction conditions shown in (d). 
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Fig. 8. Images of  [3:~~] silicon wedge obtained with inelastically scattered electrons. (a) With the beam initially untilted, the 
5p objective aperture was placed on the ~20 Kikuchi  line, close to the '2-20 spot, giving the image (c). (b) The beam was tilted 
to place the 000 spot on the 220 Kikuchi  line, thus satisfying the H R D F  tilt condition for the selected diffuse scattering angle.  
The aperture was placed on the optic axis, giving the image shown in (d). 
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4.2 Symmetry of  bright-field images 

Equation (3.3) gives for h = 0 

~o(kz, s, C+) = ~o(kz, s, C - ) .  (4.1) 

Adjacent 180 ° domains in ferroelectric BaTiO3 are re- 
lated by central inversion, i.e. they are relative C +, C-  
crystals. An excellent experimental example of (4.1) is 
observable in the bright-field micrographs of BaTiO3 
180 ° domains given by Tanaka & Honjo (1966). Inten- 
sities in the perfect crystal parts of the domains (i.e. 
away from the boundaries) are equal for constant 
thickness. This result has been obtained for the two- 
beam case by Gevers, Blank & Amelinckx (1966). 

When type I symmetry is present, equation (3.2) 
gives for the main beam 

~uo(kz, s, C)=~'o(kz, - s ,  C) . (4.2) 

Thus bright-field intensities for a non-centrosymmetri- 
cal crystal are identical for equal tilts +_ s. This has 
been observed in convergent beam patterns of cadmium 
sulphide (Goodman, 1966; Goodman & Lehmpfuhl, 
1967). An alternative interpretation has been given by 
Moodie (1967), in terms of the scattering diagrams 
introduced by Gjonnes & Moodie (1965). 

5. Symmetry of defect images 

Theories of the contrast of crystal defects imaged in 
the electron microscope are commonly based on the 
column approximation*. The deviation from perfec- 
tion of the lattice in a column near the defect is de- 
scribed by a function R(z) of the depth z in the column, 
of thickness t. R is usually, but not necessarily, a dis- 
placement parameter (Gevers, van Landuyt & Ame- 
linckx, 1965; Amelinckx, 1965). Only the component 
of a displacement R(z) parallel to the imaging reflexion 
vector h (and thus perpendicular to z) contributes to 
the image intensityt, and hence need be considered in 

* See footnote on previous page. 
t Reviews of the theories of defect image contrast have been 

given by Amelinckx (1964) and by Hirsch, Howie, Nicholson, 
Pashley & Whelan (1965). 

applying the symmetry relations to prediction of image 
intensity. 

Columns in different parts of a crystal containing 
defects are often related by one of the following two 
types of symmetry. The corresponding diffraction sym- 
metry then applies, leading to equality of intensity from 
these columns. 

Type I: Rl ( z )=R2( t - z ) .  Columns 1,2 related by 
mirror inversion in the plane z = t /2.  

Dark-field images of crystal regions in or near de- 
fects, for which this relation holds, will be identical if 
the Bragg angle is satisfied, and systematic interactions 
occur. The crystal need not be centrosymmetric. Ball 
(1964) has proved equality of intensities from columns 
for which R(z) = R0 + R ( t -  z), provided the Bragg angle 
is satisfied under two-beam conditions. The addition 
of the constant R0 does not change the image intensity. 
Type I symmetry also holds for the d-boundaries of 
Gevers et al. (1965), for which the displacement in the 
second region is a linear function of thickness (see 
Amelinckx, 1965). 

Type II: Rl(z) = - R2(t-  z). Columns 1,2 related 
by central inversion. 

Bright-field images of regions in or near defects for 
which this holds will be identical for any incident beam 
direction. The crystal must be centrosymmetric, but 
one is not limited to systematic interactions. This re- 
sult is equivalent to that of Howie & Whelan (1961), 
who showed by matrix methods that 'bright-field im- 
ages of crystals with displacements R(z) and R0-  
R ( t - z )  are identical'. This is the case for stacking 
fault fringes, and the e-boundaries of Gevers et al. 
(1965). The 'pseudo anti-symmetry' of dark-field fringe 
patterns of stacking faults (Gevers et al., 1965) is a 
further example of type II symmetry. 

6. High-resolution dark-field microscopy 

Although the advantages of the high-resolution dark- 
field technique (HRDF) over the translated-aperture 
method have been recognized for a number of years 

(a) , ~ (b) ~,~ (c) 
(R-T) (Mirror inversion) 

Fig.4. Real space illustration of type I scattering symmetry between diffraction conditions shown in (a) and (c). 
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(Pashley & Presland, 1958), the lack of efficient beam- 
tilting and anti-contamination devices has, until very 
recently, prevented its application. (For a recent re- 
view, see Hirsch et al., 1965). However, a number of 
microscopes are now available with electromagnetic 
beam-tilting, and excellent anti-contamination attach- 
ments, and the H R D F  method is becoming popular 
(Hale & McLean, 1964). 

The technique normally consists in tilting the inci- 
dent beam until the required diffracted beam, h, is di- 
rected down the optic axis, and then tilting the crystal 
to obtain the desired diffraction condition (see e.g. 
Alderson & Halliday, 1965). An alternative method, 
(Cowley, 1966), has considerable advantages, especially 
for centrosymmetric crystals. The untilted beam is as- 
sumed to be aligned on the optic axis, and the crystal 
orientation set to the desired diffraction condition for 
the reflexion h. Then to obtain a H R D F  image for h, 
the beam is tilted until the conjugate reflexion, h, is 
aligned on the optic axis, and the image recorded*. 

We can represent the two cases by: 

Initial: I~(kz, s, C) ; Tilted: I?,(kz, s + h, C ) .  

If the crystal is centrosymmetric, it follows from equa- 
tion (3.3) that these expressions are equal, 

i.e. Ih(kz, s ,C)=I~(kz ,  s + h , C )  . (6.1) 

This is shown in Fig. 3. Then the H R D F  image for h 
obtained by this method is identical with the required 
image for h observable by the translated-aperture tech- 
nique, except that it lacks the aberrations inherent in 
off-axis images. In bringing the conjugate reflexion to 
the optic axis, the beam is tilted through an angle 
- 2 0 n ,  corresponding to the translation h of all spots 
in the diffraction pattern. Cowley (1966) has pointed 
out that repeated application of the method to succes- 
sive beams would allow one to obtain the diffraction 
pattern from an area of the crystal only a few times 
larger than the smallest resolvable by the microscope. 

To obtain a H R D F  image for the reflexion h of a 
non-centrosymmetric crystal which is initially at orien- 
tation + s, the crystal must be tilted to orientation - s ,  
and the beam tilted to position the reflexion h on the 
optic axis. Type I symmetry is assumed to hold. 

To see that this is so, we look for a H R D F  condition 
equivalent to the initial condition 

In(kz, +s,  C) .  (6.2) 

Since type I symmetry is present, a condition equivalent 
to (6.2) may be found by applying equation (3.2), 

which gives In(kz, - (s + h), C) .  (6.3) 

The diffracted beam h is required to be directed down 
the optic axis. The vector sn specifying this direction 
is given by 

* If, under HRDF conditions, the Bragg conditions for 
h are satisfied, then the conjugate beam h will be satisfied for 
zero beam tilt. This was pointed out by Hale (see Alderson & 
Halliday, 1965). 

s ~ = ( - ( s + h ) + h ) =  - s .  

Hence - s  must specify the optic axis, and thus the 
crystal must be tilted to orientation - s .  

This H R D F  technique for centrosymmetric crystals 
has proved in practice to be fast and accurate. A 
JEM-7A fitted with the JEM-ABD2 beam-tilting device 
(Yanaka, Watanabe & Hirai, 1966), a precision gonio- 
meter stage (Honjo, 1962), and an efficient anti-con- 
tamination device, was used to study wedges of silicon 
at 100 kV. Two examples are presented here. 

Intensity variation of TI~ thickness contours closely 
comparable to the computed values given in Fig. 1 (d, e), 
was obtained from a wedge tilted to give 111 systematic 
reflexions under the diffracting conditions defined in 
Fig. 1 (a, b). The images are shown in Fig. 6. 

Another silicon wedge was tilted close to the [33-2] 
orientation, so that many reflexions had significant 
intensity. The comparison of the translated-aperture 
2"-20, and high-resolution 220 images is given in Fig. 7. 

Some diffusely scattered electrons will always pass 
the objective aperture, and be included in a normal 
electron microscope image. The reciprocity theorem 
should hold for these electrons, as shown in § 2, pro- 
vided the wavelength change can be neglected. Equa- 
tion (6.1) still holds, except that h is now considered 
to be a continuous function specifying the angle for 
the inelastic electrons. In principle, a vanishingly small 
objective aperture should be used when testing the R-T 
for diffuse scattering. 

Experimental evidence for the validity of the R-T 
for diffuse scattering was obtained, with use of the 
same silicon wedge. A 5/z objective aperture was used 
in imaging diffuse electrons near the 220 Bragg spot, 
by displacing the aperture (Kamiya & Uyeda, 1961). 
The ~ 0  Kikuchi line passed through the region se- 
lected [Fig. 8(a)]. The beam was then tilted to place the 
000 spot on the selected position on the ~ 0  Kikuchi 
line, and the corresponding image taken with the aper- 
ture on the optic axis, as shown in Fig. 8(c). The two 
diffuse images agree well [Figs. 8(c, d)], although micro- 
photometry of these and similar pairs of images reveals 
differences in the background intensities, and fringe 
contrast. Since the aperture diameter was as great as 
one-sixth of the spot separation, detailed agreement is 
not expected. It is thought that some of the differences 
may be due to inelastically scattered electrons for which 
the wavelength change cannot be neglected, but ex- 
periments using an energy analyser would be necessary 
to confirm this. 
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Diffuse Scattering in Electron Diffraction Patterns. 
I. General Theory and Computational Methods 

BY J. M. COWLEY AND A. P. POGANY 
School of  Physics, University of  Melbourne, Parkville N.2, Victoria, Australia 

(Received 16 January 1967 and in revised form 5 June 1967) 

The solution of the n-beam dynamical theory of the diffraction of electrons by crystals is generalized 
to cover the case of diffraction by crystals containing defects and disorders, including thermal motion. 
The conditions and assumptions under which pra&ical computer calculations of diffuse intensities can 
be made are explored on the basis of the slice approach of Goodman and Moodie, although matrix 
methods are equally applicable. It is shown that, if the range of correlation of the deviations from the 
perfect crystal lattice is small, the total diffuse scattering can be expressed in terms of dynamical factors 
which multiply the intensities calculated using the kinematical approximation. Simple expressions are 
derived for the absorption coefficients which must be applied to the sharp Bragg reflexions to take 
account of the energy lost from them into the diffuse scattering. The possibility that the intensity of 
diffuse scattering may show dependence on the range of correlation of the defects is discussed. 

1. Introduction 

Especially since improved techniques have made it pos- 
sible to observe single-crystal spot patterns from very 
small single crystals, a great many observations have 
been made of diffuse scattering effects in electron dif- 
fraction patterns, arising from thermal motion of the 
atoms and various types of defects and disorder in the 
crystal. In many cases these observations parallel those 
made on single crystals by X-ray diffraction methods, 

but the relative ease of observation of the effects in 
electron diffraction patterns, the possibility of using 
extremely small crystals, and the increasing evidence 
for effects not directly comparable with those familiar 
from X-ray work are all factors which suggest that a 
sound basis for the interpretation of the observed 
intensities would be of great value. 

Following the initial work of Yoshioka (1957), con- 
cerning the effects of inelastic diffuse-scattering proces- 
ses, a number of authors have reported theoretical 


